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On Asymptotic Properties of Aliquot Sequences

By P. Erdös

Abstract. Put s*1 >(«) = o(n) - n, o(n) = ^d\„d. sk(n) = s^X\s^k~X\n)). In this note we

prove that for every k the density of integers satisfying

A«) = (1 + a(l))«((a(/i) -n)/n)k

is 1.   Several unsolved problems are stated.

Denote by a(n) the sum of the divisors of n.  Define

s°(n) = n,      sk+1 («) = a(sk(n)) - sk(n).

Catalan and Dickson conjectured that the sequence sk(n), k = 1, 2, . . . , is always

bounded, i.e. either sk(n) = 1 for some k or the sequence becomes periodic.  It is a

curious fact for which nobody seems to have an explanation that relatively few cycles

of size greater than two have been found and none of size three.  The Lehmers, and

Guy and Selfridge, made extensive numerical investigations.  As one consequence of

their work, the Catalan-Dickson conjecture is now verified for n < 276. Guy and

Selfridge have various convincing heuristic arguments which seem to indicate that the

Catalan-Dickson conjecture is in fact false.  The nicest way of disproving the Catalan-

Dickson conjecture would be to find an n so that for every k,

(1) sk(n)>sk-x(n).

It seems likely that such an n does not exist, but there does not seem to be much

hope of deciding this question.

H. W. Lenstra proved that for every k there is an m so that (sx(m) will for

simplicity be denoted by s(m))

(2) s°(m) < s(m) < ■ ■ ■ < sk(m).

As far as I know, the proof of Lenstra is unpublished; and since it is very short, I

give his proof here:

Let pi be the rth prime (pj = 2).  It is easy to construct a sequence (r,-)JLi of

natural numbers L with the property that

Pi' IcKpf+Y) for ' > 1 and rt = 2 (define for instance

h = 2> fi+1 = ^Pi (Pi+1 - 1)) for / > 1, where 0 is

Euler's 0-function).
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We define for / > 1 :  A¡ = {m\m natural number and p¡  \\m for 1 <i</}.

Here pa\\n means p" I n and pa+ x in. Then

(**) for m G A¡, t>2, we have s(m) > m, and s(m) G A¡_¡.

Proof of (**).  From / > 2 it follows that 12 \m, hence s(m) > m.  Furthermore,

m G A,, hence m = Pj1 ■ • • p/Z? with (5, m/fi) = 1 and s(m) = o(m) - m =

a(pj!) ■ • • a(pt')a(B) - ptx • • • p/B. Now for 1 < / < / - 1 we have p¡' \\m and (by

use of (*)) p¡'     | a(pi+ !)I o(m) which implies p¡' \\s(m); conclusion:  s(m) G Al_l.

Repeated application of (**) yields m < s(m) < • • • < s,-1(m) (G^4,) for

m G A¡.    Q.E.D.

In the present note we prove the following sharper result:

Theorem 1. For every k and S > 0 and for all n except a sequence of density 0

(3) (1 - 6>I f&)' < sKn) < (1 + S)h ft*)',      Ki<k.

Before we prove our theorem we make a few remarks.  First of all, since s(ri)/n

> 7/5 for all n = 0(30), the lower bound of (3) clearly strengthens (2).

It would be very desirable to strengthen Theorem 1 by showing that (3) remains

true if k tends to infinity (not too slowly) together with n, e.g. for k = (log n)€.  I

do not see how this can be done.

Guy and Selfridge have fairly convincing heuristic arguments that for infinitely

many values of m, (2) holds for k < (log m)x~e.  I see no way of proving this, but

the problem does not seem to be completely hopeless.

The lower bound in Theorem 1 we will prove in full detail; we will only outline

the complicated proof of the upper bound.

Before we start our proof we make a few simple remarks which we will need in

our proof.   Let S¡, S2, . . . , Sk be k sets of primes and assume that for each/,

(4) 3&)=~-
Then it easily follows from the sieve of Eratosthenes that almost all integers (i.e. all

integers if we neglect a sequence of density 0) have a prime factor p   G Si.  This result

is well known and we leave the simple proof to the reader.

Lemma 1. Let t and k be integers.   Then almost all integers n have k prime

factors (7j, . . . , qk satisfying

<7i = - 1    (modi),      qf--l    (mod^j),      \<j<k-\.

The lemma follows immediately from the previous remark and the classical

theorem of Dirichlet.  Denote by Sx the set of primes satisfying p. = — 1 (mod r)

and S, is the set of primes p. = - 1 (mod p.2_, ) where p-x G S,.  The theorem of

Dirichlet implies that (4) is satisfied; thus our lemma follows.

Define/,(«) = n pa.

Lemma 2. For every k and I and almost all n,

(5) f¡(n) = fjis'in))   fori<k.
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We shall show that for every tj > 0 and x > x0(t,) the number of integers n < x

for which (5) does not hold is less than rjx. Choose u = u(r¡, I) so large that u0 > I

and so that for every x > x0(ji) there are fewer than xrj/2 integers n < x which are

divisible by a prime power pa>u with a > 1. This clearly can be done by choosing u so

large that

Z       — <2
p   >u;a> 1 p ¿

Now choose 1 = u\; then

(6) /#i)|I

for all n <x except the at most r¡x/2 integers excluded above.

Put t = L2 in Lemma 1 ; then p2 Jfn, 1 < / < k, and hence by Lemma 1,

(7) s(n) =a(n)-n=0    (mod f\ Pi) •

But

(8) s(n) $ 0    (mod pf),      Kj<k-l,

since o(n) = 0 (mod L2X\kl\pf). Also,

(9) /¡MOWjOO,

since if pa || n, p < / then p2<* I o(n) by a(w) = 0 (mod L2). (By (6), pa I fc)

The same argument gives for every i, 1 < / < fc,

(7') i,+ 1(»)-.o^i))-i'0*)«0    /"mod 'S'A

(8')       si+ x(n)ÎO    (mod p2),       1 < / < k - i - 1,      a(i'(«)) 3 0    (mod ¿2),

and

(9') /;(s,+ 1 («))=/,(*'(")) = /,(»),

which proves (5) and Lemma 2.

Write
v     n

J,(n)=   2-     -j-
d\f,(n) "

Lemma 3. For every e and tj and I > /0(e, 17) the number of integers n < x for

which o¡(ri) > (1 - e)o(n) is greater than (1 - 7])x.

We evidently have

(10)      Éw-#<Z       Z       |[<£¿-<7-
^^ n = l (¡>l  /!<j;n^O(modíí) "        d>l d¿ '

If there would be r\x integers satisfying a,(n) < (1 - e)o(n), we clearly would have

X nx 2

0 !) Z (o(«) - o,(n)) > e ¿ í > er?2 *
n=l f=i 2
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(10) contradicts (11) for / > 2/er?2, which proves Lemma 3.

From Lemmas 2 and 3 we obtain that for all but T)x + o(x) integers n < x we

have that (5) holds and

(12) o» > (1 - e)a(n).

From (5) and (12) we have for every 1 < / < k,

(13) a(s'(«)) > ofsXrij) > (1 - ey(n)o(n)ln,

or

(14) si+ x (n) = a(s'(n)) - An) > (1 - €>'(«) 2ÍHLZJL = (1 _ ey(n) SM .

From (13) and (14) we immediately obtain that for every i < k,

s^(n)>(l-erx(^y+1n>(l-8)(^)Í+1n   ife<e(o),

which completes the proof of the lower bound of (3).  It would not be difficult to

prove that the lower bound in (3) is valid for k < log,.« where log,.« is the r-fold

iterated logarithm (r > 2), but I do not at present see how to get any reasonable bound

for k.

With a little more trouble I can prove that if we neglect a sequence of density

0, then

(15) f,{n)=mn))

holds for all / < log log n, and that this is no longer true for / = (log log n)x+e.  I do

not give the details.

Now I outline the proof of the upper bound of (3).  We restrict ourselves to

outlining the proof that for almost all integers n,

o(s(n))ls(n) < (1 + e)a(n)/n.

The proof is similar for i > 1.

In view of Lemma 2 (or (13)) we only have to show that the contribution of the

large primes to a(s(n))¡s(n) is negligible.  This statement easily follows from the

Lemma 4.  To every e > 0 there is an I so that for all x,

n=l    p\s(n);p>l   y

Unfortunately, I have at present only a very messy proof of the lemma and this is the

reason that I suppress it.  I am  fairly sure that an elegant and simple proof exists.

Finally I state without proof a few related results.  Denote by f(n) the number of

p |n for which there is another prime q \n with q = 1 (mod p).  Then for almost all

integers, f(n) = (1 + o(l))loglogloglog«.  The reason for this weird result is that p|n

"usually" has the above property if p < log log«.   Similarly, if F{ri) denotes the number

of p|« for which there is a d\n satisfying d = 1 (mod p), then for almost all n, F(n) =

(1 + o(l))logloglogn.
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Denote by g(n) the largest r for which there is a sequence of prime factors p¡ of

n satisfyingpi+1 = 1 (mod p.), I <i <r, and by G(ri) the largest s for which there

is a sequence of divisors d¡, 1 < / < s of n satisfying di+ j s 1 (mod d¡), 1 < /' < s.

Clearly G(n) > g(n).  By the method used in proving Lemma 1 it easily follows that

for almost all n, g(n)—+ °°. On the other hand, g(n) and G\n) tend to infinity very

slowly, in fact

I  ¿   G(n) = o(\ogrx)
X  n = l

for every r where log,.* denotes the r times iterated logarithm.
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